p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22⋊C16, C8.27D4, C23.2C8, C2.2M5(2), C4.10M4(2), (C2×C16)⋊1C2, (C2×C4).3C8, (C2×C8).6C4, C2.1(C2×C16), (C22×C8).4C2, (C22×C4).8C4, C22.8(C2×C8), C2.2(C22⋊C8), C4.28(C22⋊C4), (C2×C8).107C22, (C2×C4).81(C2×C4), SmallGroup(64,29)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22⋊C16
G = < a,b,c | a2=b2=c16=1, cac-1=ab=ba, bc=cb >
(1 9)(2 20)(3 11)(4 22)(5 13)(6 24)(7 15)(8 26)(10 28)(12 30)(14 32)(16 18)(17 25)(19 27)(21 29)(23 31)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 17)(8 18)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,9)(2,20)(3,11)(4,22)(5,13)(6,24)(7,15)(8,26)(10,28)(12,30)(14,32)(16,18)(17,25)(19,27)(21,29)(23,31), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,17)(8,18)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)>;
G:=Group( (1,9)(2,20)(3,11)(4,22)(5,13)(6,24)(7,15)(8,26)(10,28)(12,30)(14,32)(16,18)(17,25)(19,27)(21,29)(23,31), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,17)(8,18)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,9),(2,20),(3,11),(4,22),(5,13),(6,24),(7,15),(8,26),(10,28),(12,30),(14,32),(16,18),(17,25),(19,27),(21,29),(23,31)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,17),(8,18),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,25),(16,26)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)]])
C22⋊C16 is a maximal subgroup of
C23⋊C16 C23.M4(2) C22.M5(2) C23.7M4(2) C22.SD32 C23.32D8 C23.12SD16 C23.13SD16 C24.5C8 (C2×D4).5C8 C8.12M4(2) D4×C16 C16⋊9D4 C16⋊6D4 D8⋊7D4 Q16⋊7D4 D8⋊8D4 D8.9D4 Q16.8D4 D8.10D4 C22.D16 C23.49D8 C23.19D8 C23.50D8 C23.51D8 C23.20D8 A4⋊C16
C2p.M5(2): C42.13C8 C42.6C8 D6⋊C16 C24.98D4 D10⋊1C16 C40.91D4 D10⋊C16 C10.6M5(2) ...
C22⋊C16 is a maximal quotient of
C23⋊C16 C22.M5(2) Q8⋊C16 C22.7M5(2) C10.6M5(2)
D2p⋊C16: D4⋊C16 D6⋊C16 D10⋊1C16 D10⋊C16 D14⋊C16 ...
C8p.D4: C22⋊C32 C23.C16 D4.C16 C24.98D4 C40.91D4 C56.91D4 ...
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 8A | ··· | 8H | 8I | 8J | 8K | 8L | 16A | ··· | 16P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | 8 | 8 | 8 | 16 | ··· | 16 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
type | + | + | + | + | |||||||
image | C1 | C2 | C2 | C4 | C4 | C8 | C8 | C16 | D4 | M4(2) | M5(2) |
kernel | C22⋊C16 | C2×C16 | C22×C8 | C2×C8 | C22×C4 | C2×C4 | C23 | C22 | C8 | C4 | C2 |
# reps | 1 | 2 | 1 | 2 | 2 | 4 | 4 | 16 | 2 | 2 | 4 |
Matrix representation of C22⋊C16 ►in GL3(𝔽17) generated by
1 | 0 | 0 |
0 | 1 | 0 |
0 | 4 | 16 |
1 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 16 |
3 | 0 | 0 |
0 | 4 | 15 |
0 | 0 | 13 |
G:=sub<GL(3,GF(17))| [1,0,0,0,1,4,0,0,16],[1,0,0,0,16,0,0,0,16],[3,0,0,0,4,0,0,15,13] >;
C22⋊C16 in GAP, Magma, Sage, TeX
C_2^2\rtimes C_{16}
% in TeX
G:=Group("C2^2:C16");
// GroupNames label
G:=SmallGroup(64,29);
// by ID
G=gap.SmallGroup(64,29);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,-2,48,73,69,88]);
// Polycyclic
G:=Group<a,b,c|a^2=b^2=c^16=1,c*a*c^-1=a*b=b*a,b*c=c*b>;
// generators/relations
Export